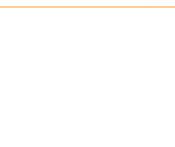
Horserace Betting Levy Board Parnell House 25 Wilton Road London, SW1V 1LW Tel: 020 7333 0043 Fax: 020 7333 0041 Web: www.hblb.org.uk Email: equine.grants@hblb.org.uk

Evolution of *Streptococcus equi* the causative agent of equine strangles

The importance of gene gain to disease

Prj: 758


Streptococcus equi evolution: quantification of the importance of key genome acquisition events

• Prj/758

-Dr. Andrew Waller

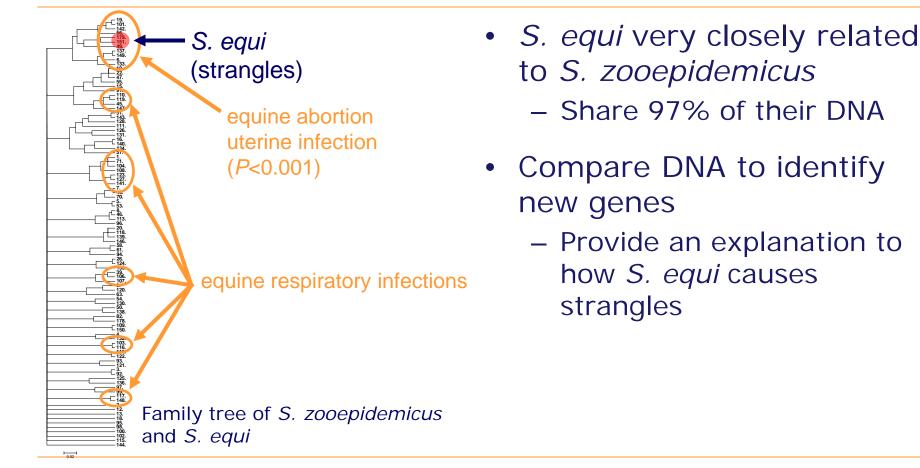
Animal *Health* Trust

– Dr. Romain Paillot

Strangles in horses

- The most frequently diagnosed contagious equine disease worldwide
- Caused by Streptococcus equi
- Morbidity rates up to 100%
- Case fatality rates up to 10% reported in some outbreaks
- >1,000 outbreaks per year in the UK

Strangles in Thoroughbreds

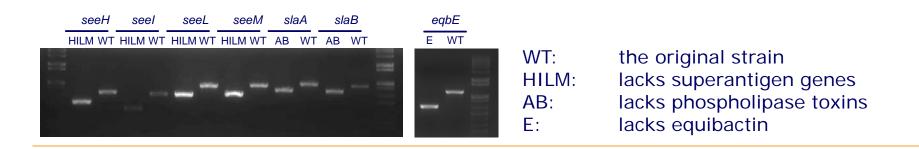

- Common in horse populations
 - Spill-over into the Thoroughbred
 - Economic and welfare impact
- Quarantine and testing can prevent outbreaks
- Current vaccine interferes with diagnostic tests
 - Implications for horse movement
 - Need for new vaccines

S. equi: an aggressive member of the *S. zooepidemicus* family

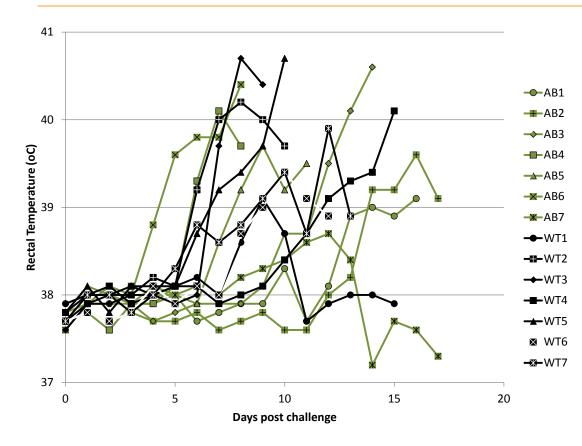


Webb et al., 2008; Microbiology

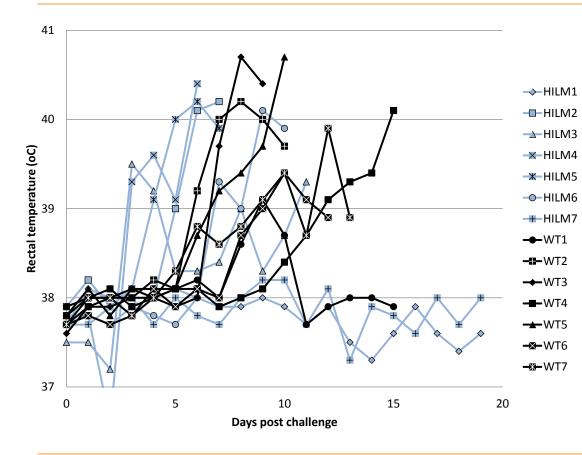
Gene gain in S. equi


- Superantigens
 - Misdirect the equine immune response
- Phospholipase toxins
 - Kill equine cells
 - Lead to inflammation
- Equibactin
 - Iron acquisition
 - Enhances growth of S. equi in the horse

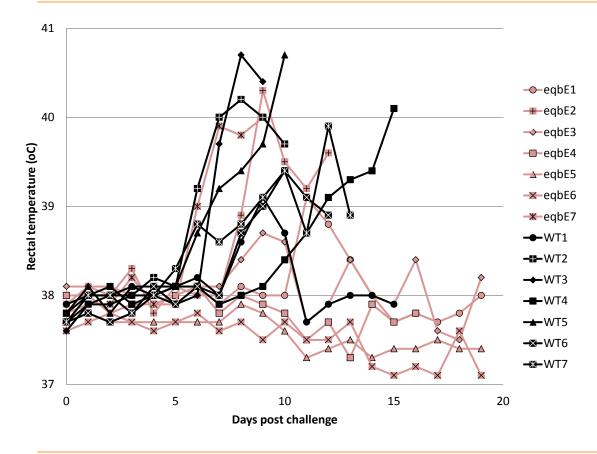
Holden et al., 2009; PLoS Pathogens


Objective of this study

- To determine if superantigens, equibactin or phospholipase toxins are important for *S. equi* to cause strangles.
 - Delete genes (size of DNA band smaller vs. original (WT) in the picture below)
 - Test to see if these strains can still cause disease


Importance of phospholipase toxins

- No significant reduction in disease (AB = strain lacking the phospholipase genes *slaA* and *slaB*, compared to WT = original strain)
- Gain of phospholipase toxins was not the key event in the evolution of *S. equi*


Importance of superantigens

- 4 ponies developed clinical signs earlier! (HILM = strain lacking the superantigen genes seeH, seeI, seeL and seeM, compared to WT = original strain)
- 2 ponies had no clinical signs (HILM1 and HILM7)
- The role of superantigens is complex
 - Implications for vaccine design

Importance of equibactin

- Loss of equibactin significantly reduced disease (eqbE = strain unable to make equibactin, compared to WT = original strain)
- Gain of equibactin was key to the evolution of *S. equi*
 - Informs the design of new vaccines

Harris et al., 2015; Genome Research

Conclusions

- Gain of equibactin was key to the evolution of *S. equi*
- Superantigens play a complex role in disease
 - Ensure that all horses become infected
 - Reduce the severity of disease in some animals to help them survive and recover to become carriers
 - Maximise the opportunity for *S. equi* to transmit to new individuals
- Gain of phospholipase toxins had a lesser effect on the ability of *S. equi* to cause strangles

Impact on the Thoroughbred

- Strangles widespread in some horse populations
 - Potential for spill-over into the Thoroughbred
 - Significant welfare and economic impact
 - Vaccines must be safe, effective and not interfere with diagnostic tests
- By understanding which genes are important to *S. equi*, this project informs vaccine design
 - Increase herd immunity
 - Reduce the welfare and economic cost of strangles
 - Improve safe movement of horses

Next steps

- Incorporation of the equibactin deletion into a live vaccine strain in order to improve safety and avoid adverse reactions
- Identification of the equibactin receptor, which could improve the effectiveness of new subunit vaccines
- Investigate vaccine adjuvants and the application of superantigens