Horserace Betting Levy Board Parnell House 25 Wilton Road London, SW1V 1LW Tel: 020 7333 0043 Fax: 020 7333 0041 Web: www.hblb.org.uk Email: equine.grants@hblb.org.uk

Resource development to maximise effective control of an outbreak of African Horse Sickness in Great Britain

Dr Richard Newton

Prj: 754

Background and relevance to the Thoroughbred (1)

- Insect vector-borne infectious diseases should be considered emerging threats to <u>all</u> horses in the UK, irrespective of their size, breed or use.
- Examples of such diseases include:
 - African Horse Sickness (AHS) spread by biting midges
 - Equine Infectious Anaemia (EIA) spread by biting flies
 - West Nile Virus (WNV) spread by mosquitoes
 - Piroplasmosis spread by ticks

Background and relevance to the Thoroughbred (2)

- An occurrence of AHS in the UK would be likely to have an immediate, widespread and prolonged impact on almost all horse related activities.
- Government and the equine industry in the UK have worked together to develop legislation and contingency plans to help deal with AHS.
- This project considers further measures to maximise effective control of an AHS outbreak in the UK.

Reasons for this study

- Assess usefulness of National Equine Database (NED) owner data to map the national horse distribution of Great Britain.
- Assess extents of data missing from NED and obsolete data retained in NED.
- Develop mathematical models of the risk of outbreaks of African Horse Sickness (AHS) occurring in Great Britain.

What we did (1)

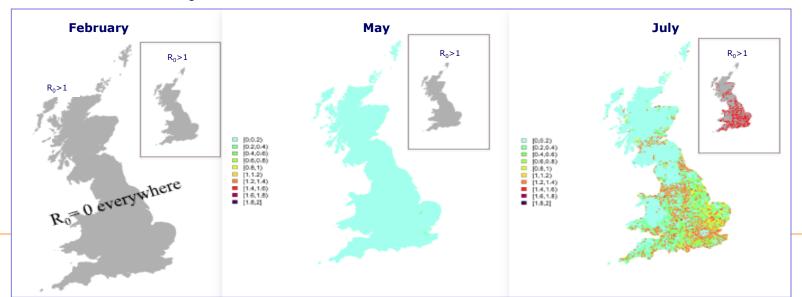
- Assess the separation of owner location and horse locations to create new GB-wide horse population map.
- Assess Trading Standards inspections data to find percentage of GB horse population with missing passports.

What we did (2)

- Survey of owners with PIO-registered horses to find the percentage of NED population with obsolete records
- Use existing and new data to model risk of AHS
 outbreaks in GB and assess factors that cause
 variation in risk to all horses, irrespective of size,
 breed and use

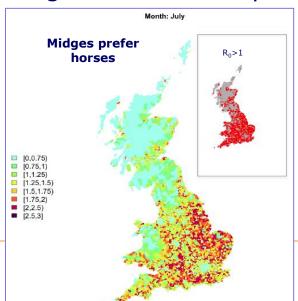
Results (1)

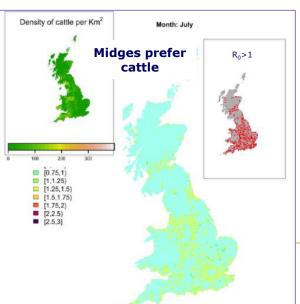
- Estimates made of inaccuracies in NED:
 - 3.5% of live horses in GB missing from NED
 - 11.7% of deceased horses retained in NED
 - Horse population over-estimated by NED
 - National population estimated at 1.1M horses


Results (2)

- Revised GB horse distribution modeled from NED owner locations, horse-owner separations and land usage data created:
 - A resource suitable for disease risk modeling
 - Disease risk modeling uses a measure called R₀
- R₀ = average number of new cases arising from each case of disease in a susceptible population
 - When R₀< (less than)1 the disease cannot be maintained and dies out
 - When R₀> (more than)1 the disease spreads in the population

Results (3)


- AHS risk maps produced for GB show:
 - Risk (R₀) varies by month with temperature
 - Risk (R₀>1) of outbreaks spreading is in June to September
 - Feb: $R_0=0$, no spread anywhere in GB, AHS dies out
 - May: R₀<1, extremely limited spread anywhere in GB, dies out
 - July: R₀>1, spread of AHS possible in GB



Results (4)

- Risk (R₀) varies with density of ruminant species (cattle, sheep)
- Risk (R₀) varies with midge abundance
- Risk (R₀) varies with midge biting preference
 - Midges prefer horses: $R_0 > 1$, risk of spread AHS increased in GB
 - Midges prefer cattle: $R_0 \ge 1$, some limited spread of AHS in GB, cograzing cattle with will probably protect horses

Conclusions & relevance to the Thoroughbred (1)

- The project identified the need for better:
 - Compliance by horse owners with passport regulations for NED data to be more useful for disease control purposes.
 - Knowledge of midge feeding preferences to better understand effect on AHS of co-grazing ruminants.

Conclusions & relevance to the Thoroughbred (2)

- Knowledge of how midge abundance relates to the amount of available hosts.
- Surveillance for AHS in warmer months when outbreaks would be at greatest risk of spread.
- Knowledge of methods to optimise vaccine coverage in Eastern and Southern England to eliminate AHS.

Scientist's Summary

- African Horse Sickness (AHS) is a highly fatal, biting-midge insect-borne viral disease of horses, currently restricted to sub-Saharan Africa.
- Control of emerging diseases like AHS requires knowledge of horse population size and geographical distribution and mechanism of spread.
- Data on the UK equine population held on the National Equine Database (NED) needed investigating to determine how useful NED was as a resource for assisting equine disease surveillance and control.

Scientist's Summary

- This project examined the extent of inaccuracies within NED and initiated development of mathematical models for the transmission of AHS in Britain.
- Inaccuracies found in NED data, including missing and retained obsolete data, and absence of horse location information on NED, would significantly affect ability to rapidly locate horses in a major disease outbreak.
- To overcome this problem a more accurate national horse distribution map was created and used in developing mathematical models of AHS transmission and predict risks of an outbreak in Britain.

Scientist's Summary

- Models confirmed increased risk of AHS outbreaks June-September, but risk varying geographically with temperature, and abundance of midges and cattle/sheep (alternative hosts for midges).
- Assuming midges prefer feeding on ruminants than horses, co-grazing cattle/sheep with horses would probably reduce the risk of an AHS outbreak.
- Highest levels of AHS vaccine coverage would be required in eastern and southern England to ensure elimination of AHS.